Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0292525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37930986

RESUMO

Hydrothermal vents are extreme environments, where abundant communities of copepods with contrasting life history traits co-exist along hydrothermal gradients. Here, we discuss how these traits may contribute to the observed differences in molecular diversity and population genetic structure. Samples were collected from vent locations across the globe including active ridges and back-arc basins and compared to existing deep-sea hydrothermal vent and shallow water data, covering a total of 22 vents and 3 non-vent sites. A total of 806 sequences of mtDNA from the Cox1 gene were used to reconstruct the phylogeny, haplotypic relationship and demography within vent endemic copepods (Dirivultidae, Stygiopontius spp.) and non-vent-endemic copepods (Ameiridae, Miraciidae and Laophontidae). A species complex within Stygiopontius lauensis was studied across five pacific back-arc basins at eight hydrothermal vent fields, with cryptic species being restricted to the basins they were sampled from. Copepod populations from the Lau, North Fiji and Woodlark basins are undergoing demographic expansion, possibly linked to an increase in hydrothermal activity in the last 10 kya. Highly structured populations of Amphiascus aff. varians 2 were also observed from the Lau to the Woodlark basins with populations also undergoing expansion. Less abundant harpacticoids exhibit little to no population structure and stable populations. This study suggests that similarities in genetic structure and demography may arise in vent-associated copepods despite having different life history traits. As structured meta-populations may be at risk of local extinction should major anthropogenic impacts, such as deep-sea mining, occur, we highlight the importance of incorporating a trait-based approach to investigate patterns of genetic connectivity and demography, particularly regarding area-based management tools and environmental management plans.


Assuntos
Copépodes , Fontes Hidrotermais , Características de História de Vida , Animais , Copépodes/genética , DNA Mitocondrial , Mitocôndrias/genética , Filogenia , Ecossistema
2.
PLoS One ; 17(10): e0275638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36197893

RESUMO

Understanding drivers of biodiversity patterns is essential to evaluate the potential impact of deep-sea mining on ecosystems resilience. While the South West Pacific forms an independent biogeographic province for hydrothermal vent fauna, different degrees of connectivity among basins were previously reported for a variety of species depending on their ability to disperse. In this study, we compared phylogeographic patterns of several vent gastropods across South West Pacific back-arc basins and the newly-discovered La Scala site on the Woodlark Ridge by analysing their genetic divergence using a barcoding approach. We focused on six genera of vent gastropods widely distributed in the region: Lepetodrilus, Symmetromphalus, Lamellomphalus, Shinkailepas, Desbruyeresia and Provanna. A wide-range sampling was conducted at different vent fields across the Futuna Volcanic Arc, the Manus, Woodlark, North Fiji, and Lau Basins, during the CHUBACARC cruise in 2019. The Cox1-based genetic structure of geographic populations was examined for each taxon to delineate putative cryptic species and assess potential barriers or contact zones between basins. Results showed contrasted phylogeographic patterns among species, even between closely related species. While some species are widely distributed across basins (i.e. Shinkailepas tollmanni, Desbruyeresia melanioides and Lamellomphalus) without evidence of strong barriers to gene flow, others are restricted to one (i.e. Shinkailepas tufari complex of cryptic species, Desbruyeresia cancellata and D. costata). Other species showed intermediate patterns of isolation with different lineages separating the Manus Basin from the Lau/North Fiji Basins (i.e. Lepetodrilus schrolli, Provanna and Symmetromphalus spp.). Individuals from the Woodlark Basin were either endemic to this area (though possibly representing intermediate OTUs between the Manus Basin and the other eastern basins populations) or, coming into contact from these basins, highlighting the stepping-stone role of the Woodlark Basin in the dispersal of the South West Pacific vent fauna. Results are discussed according to the dispersal ability of species and the geological history of the South West Pacific.


Assuntos
Gastrópodes , Fontes Hidrotermais , Animais , Biodiversidade , Ecossistema , Gastrópodes/genética , Humanos , Oceano Pacífico , Filogenia , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...